On spectral stability of solitary waves of nonlinear Dirac equation on a line
نویسندگان
چکیده
We consider the nonlinear Dirac equation in one dimension (the massive Gross-Neveu model). We explicitly construct solitary wave solutions, and then study the linearization of the equation at a solitary wave. We present numerical simulations and justify them with explicit construction of some of the eigenfunctions. Then we present a WKB-based argument which justifies (but does not prove) the spectral stability of solitary waves of sufficiently small amplitude. We also compare our results with previously known numerical simulations.
منابع مشابه
Compressive and rarefactive dust-ion acoustic solitary waves in four components quantum plasma with dust-charge variation
Based on quantum hydrodynamics theory (QHD), the propagation of nonlinear quantum dust-ion acoustic (QDIA) solitary waves in a collision-less, unmagnetized four component quantum plasma consisting of electrons, positrons, ions and stationary negatively charged dust grains with dust charge variation is investigated using reductive perturbation method. The charging current to the dust grains ca...
متن کاملSimplest Equation Method for nonlinear solitary waves in Thomas- Fermi plasmas
The Thomas-Fermi (TF) equation has proved to beuseful for the treatment of many physical phenomena. In this pa-per, the traveling wave solutions of the KdV equation is investi-gated by the simplest equation method. Also, the effect of differentparameters on these solitary waves is considered. The numericalresults is conformed the good accuracy of presented method.
متن کاملDynamics of Three-Dimensional Gravity-Capillary Solitary Waves in Deep Water
A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatial...
متن کاملStability of solitary waves in the nonlinear Dirac equation with arbitrary nonlinearity.
We consider the nonlinear Dirac equation in 1 + 1 dimension with scalar-scalar self interaction g(2)/κ+1(̅ΨΨ)(κ+1) and with mass m. Using the exact analytic form for rest frame solitary waves of the form Ψ(x,t)=ψ(x)e(-iωt) for arbitrary κ, we discuss the validity of various approaches to understanding stability that were successful for the nonlinear Schrödinger equation. In particular we study t...
متن کاملOptical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures
We present a detailed analysis of finite energy solitary waves in twoand three-dimensional nonlinear periodic structures exhibiting a complete photonic band gap. Solitary waves in photonic crystals with a twodimensional ~2D! square and triangular symmetry group as well as a 3D fcc symmetry group are described in terms of an effective nonlinear Dirac equation derived using the slowly varying env...
متن کامل